ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

On N Quasi D-Operator Operators

Wanjala Victor^{1,*} and A. M. Nyongesa¹

1 Department of Mathematics, Kibabii University, Bungoma, Kenya.

Abstract: In this paper, we introduce the class of N quasi D-operator acting on the usual Hilbert space H over the complex plane. An operator T is said to be an N quasi D-operator if $T(T^{*2}(T^D)^2) = N(T^*T^D)^2T$, where N is a bounded operator on H. We investigate the basic behavior of this class of operator.

Keywords: Normal operators, D-Operator, Almost Class (Q), quasi-class (Q) operators, N quasi D-operator. © JS Publication.

1. Introduction

H denotes the superable complex Hilbert space in this paper, while B(H) is the usual Banach algebra of all bounded linear operators on H. Let $T \in B(H)$, Drazin inverse of T is an operator $T^D \in B(H)$, such that $TT^D = T^DT$, $T^D = T^DTT^D$ and $T^{k+1}T^D = T^k$ provided it exists. An operator $T \in B(H)$ is said to be D-Operator if $T^{*2}(T^D)^2 = (T^*T^D)^2$ [1], class (Q) if $T^{*2}T^2 = (T^*T)^2$ [4], M Quasi class (Q) if $T(T^{*2}T^2) = M(T^*T)^2T$ [5], Quasi class (Q) if $T(T^{*2}T^2) = (T^*T)^2T$, N quasi D-Operator if $T(T^{*2}(T^D)^2) = N(T^*T^D)^2T$, for a bounded linear operator N. Let $T = \xi + i\zeta$, with $\xi = Re(T) = \frac{T^D + T^*}{2}$ and $\zeta = Im(T) = \frac{T^D - T^*}{2i}$. We shall simply denote $U^2 = (T^*T^D)^2$ and $V^2 = T^{*2}(T^D)^2$ where C and V are non-negative definite.

2. Main Results

Definition 2.1. Let $T \in B(H)$ be Drazin invertible, an operator T is called N Quasi D-Operator if $T(T^{*2}(T^D)^2) = N(T^*T^D)^2T$ where N is a bounded operator on H.

Theorem 2.2. Let $T \in B(H)$ and let V commute with ξ and ζ such that $V^2T = NU^2T$, it follows that T is an N quasi D-operator.

Proof. We recall that $T = \xi + i\zeta$, with $\xi = Re(T) = \frac{T^D + T^*}{2}$ and $\zeta = Im(T) = \frac{T^D - T^*}{2i}$ and $U^2 = (T^*T^D)^2$ and $V^2 = T^{*2}(T^D)^2$. Since $V\xi = \xi V$ and $U\zeta = \zeta U$, we have; $V^2\xi = \xi V^2$ and $U^2\zeta = \zeta U^2$, thus

$$V^2T + V^2(T)^* = TV^2 + (T)^*V^2$$

$$V^{2}T - V^{2}(T)^{*} = TV^{2} - (T)^{*}V^{2}$$

 $^{^*}$ E-mail: wanjalavictor 421@gmail.com

implies $TV^2 = V^2T$. Hence;

$$\begin{split} T(T^{*2}(T^D)^2) &= ((T^*(T^*T^D)T^D)T \\ &= (T^*T^D)^2T. \\ &= NU^2T \\ \Rightarrow T(T^{*2}(T^D)^2) &= N((T^*(T^*T^D)T^D)T \\ &T(T^{*2}(T^D)^2) &= N(T^*T^D)^2T \end{split}$$

Hence T is an N Quasi D-Operator.

Proposition 2.3. Let $T \in B(H)$ be a D-operator where $V^2 \xi = \frac{1}{N} \xi V^2$ and $V^2 \zeta = \frac{1}{N} \zeta V^2$, then T is an N Quasi D-Operator.

Proof. $V^2 \xi = \frac{1}{N} \xi V^2$ and $V^2 \zeta = \frac{1}{N} \zeta V^2$ implies

$$V^2(\xi + i\zeta) = \frac{1}{N}(\xi + i\zeta)V^2$$

$$V^2T = \frac{1}{N}TV^2$$

$$(T^*(T^*T^D)T^D)T = \frac{1}{N}T(T^*(T^*T^D)T^D)$$

$$T(T^*(T^*T^D)T^D) = N(T^*(T^*T^D)T^D)T$$

$$= N(T^*T^D)^2 \text{ (Since T is a D-operator)}.$$

Hence T is an N Quasi D-Operator.

Theorem 2.4. Let T_{α} and T_{β} be two N Quasi D-Operators from B(H,H) such that $T_{\alpha}^{D}T_{\beta}^{*2} = T_{\beta}^{D}T_{\alpha}^{*2} = T_{\alpha}^{*2}(T_{\beta}^{D})^{2} = T_{\beta}^{*2}(T_{\alpha}^{D})^{2} = 0$, then $T_{\alpha} + T_{\beta}$ is an N Quasi D-Operator.

Proof. Since T_{α} and T_{β} are N Quasi D-Operators, we have;

$$\begin{split} (T_{\alpha} + T_{\beta})[(T_{\alpha} + T_{\beta})^{*2}(T_{\alpha}^{D} + T_{\beta}^{D})^{2}] &= (T_{\alpha} + T_{\beta})[(T_{\alpha}^{*2} + T_{\beta}^{*2})((T_{\alpha}^{D})^{2} + (T_{\beta}^{D})^{2}) \\ &= (T_{\alpha} + T_{\beta})[T_{\beta}^{*2}(T_{\alpha}^{D})^{2} + T_{\beta}^{*2}(T_{\beta}^{D})^{2} + T_{\alpha}^{*2}(T_{\alpha}^{D})^{2} + T_{\alpha}^{*2}(T_{\beta}^{D})^{2}] \\ &= (T_{\alpha} + T_{\beta})[T_{\beta}^{*2}(T_{\beta}^{D})^{2} + T_{\alpha}^{*2}(T_{\alpha}^{D})^{2}] \quad \text{since } T_{\beta}^{*2}(T_{\alpha}^{D})^{2} = T_{\alpha}^{*2}(T_{\alpha}^{D})^{2} = 0 \\ &= (T_{\alpha} + T_{\beta})[T_{\beta}^{*2}(T_{\beta}^{D})^{2} + T_{\alpha}^{*2}(T_{\alpha}^{D})^{2}] \\ &= T_{\alpha}T_{\alpha}^{*2}(T_{\alpha}^{D})^{2} + T_{\beta}T_{\beta}^{*2}(T_{\beta}^{D})^{2} \quad \text{since } T_{\alpha}T_{\beta}^{*2}(T_{\beta}^{D})^{2} = T_{\beta}T_{\alpha}^{*2}(T_{\alpha}^{D})^{2} = 0 \\ &= N(T_{\alpha}^{*2}(T_{\alpha}^{D})^{2})T_{\alpha} + N(T_{\beta}^{*2}(T_{\beta}^{D})^{2})T_{\beta} \\ &= N(T_{\alpha}^{*}T_{\alpha}^{D})^{2}T_{\alpha} + N(T_{\beta}^{*}T_{\beta}^{D})^{2}T_{\beta} \end{split}$$

Thus $T_{\alpha} + T_{\beta}$ is an N Quasi D-Operator.

Theorem 2.5. Let T_{α} and T_{β} be two N Quasi D-Operators from B(H,H) such that $T_{\alpha}^{D}T_{\beta}^{*2} = T_{\beta}^{D}T_{\alpha}^{*2} = T_{\alpha}^{*2}(T_{\beta}^{D})^{2} = T_{\beta}^{*2}(T_{\alpha}^{D})^{2} = 0$, then $T_{\alpha} - T_{\beta}$ is an N Quasi D-Operator.

Proof. The proof follows from Theorem 2.4 above.

Theorem 2.6. Let T_{α} and T_{β} be two N Quasi D-Operators, then T_{α} T_{β} is an N Quasi D-Operator provided $T_{\alpha}T_{\beta} = T_{\beta}T_{\alpha}$ and $(T_{\alpha}^{D})^{2}T_{\beta}^{*2} = T_{\beta}^{*2}(T_{\alpha}^{D})^{2}$.

Proof. Since T_{α} and T_{β} are N Quasi D-Operators, we have;

$$(T_{\alpha}T_{\beta})[(T_{\alpha}T_{\beta})^{*2}((T_{\alpha}T_{\beta})^{D})^{2}] = (T_{\alpha}T_{\beta})[(T_{\alpha}^{*2}T_{\beta}^{*2})(T_{\alpha}^{D}T_{\beta}^{D})^{2}]$$

$$= (T_{\alpha}T_{\beta})[(T_{\beta}^{*2}T_{\alpha}^{*2})(T_{\alpha}^{D}T_{\beta}^{D})^{2}]$$

$$= T_{\alpha}(T_{\beta}T_{\alpha}^{*2})(T_{\beta}^{*2}(T_{\alpha}^{D})^{2})(T_{\beta}^{D})^{2}$$

$$= T_{\alpha}(T_{\alpha}^{*2}T_{\beta})(T_{\beta}^{*2}(T_{\alpha}^{D})^{2})(T_{\beta}^{D})^{2}$$

$$= T_{\alpha}T_{\alpha}^{*2}T_{\beta}(T_{\alpha}^{D})^{2}T_{\beta}^{*2}(T_{\beta}^{D})^{2}$$

$$= T_{\alpha}T_{\alpha}^{*2}(T_{\alpha}^{D})^{2}T_{\beta}T_{\beta}^{*2}(T_{\beta}^{D})^{2}$$

$$= N(T_{\alpha}^{*2}(T_{\alpha}^{D})^{2}T_{\alpha}N(T_{\beta}^{*2}(T_{\beta}^{D})^{2})T_{\beta}$$

$$= N(T_{\alpha}^{*2}((T_{\alpha}^{D})^{2}T_{\alpha})(T_{\beta}^{*2}(T_{\beta}^{D})^{2})T_{\beta})$$

$$= N(T_{\alpha}^{*2}T_{\beta}^{*2}(T_{\alpha}^{D})^{2}(T_{\beta}^{D})^{2}T_{\alpha}T_{\beta})$$

$$= N[(T_{\alpha}T_{\beta})^{*2}(T_{\alpha}^{D}T_{\beta}^{D})^{2}(T_{\alpha}T_{\beta})]$$

$$= N[(T_{\alpha}T_{\beta})^{*2}((T_{\alpha}T_{\beta})^{D})^{2}(T_{\alpha}T_{\beta})]$$

$$= N[(T_{\alpha}T_{\beta})^{*2}((T_{\alpha}T_{\beta})^{D})^{2}(T_{\alpha}T_{\beta})]$$

Thus $T_{\alpha}T_{\beta}$ is N Quasi D-Operator.

Theorem 2.7. Power of N Quasi D-operator is similarly N Quasi D-operator.

Proof. We first show that the result holds for some p = 1, then we have ;

$$T(T^{*2}(T^D)^2) = N(T^*T^D)^2T (1)$$

Suppose the result holds for p = n, we have;

$$[T(T^{*2}(T^D)^2)]^n = (N(T^*T^D)^2T)^n$$
(2)

We then prove that the result is true for p = n + 1. We have;

$$[T(T^{*2}(T^D)^2)]^{n+1} = (N(T^*T^D)^2T)^{n+1}$$
(3)

$$[T(T^{*2}(T^D)^2)]^{n+1} = [NT(T^{*2}(T^D)^2)]^n [NT(T^{*2}(T^D)^2)]$$
(4)

$$= [N(T^*(T^D))^2 T]^n [N(T^*(T^D))^2 T] \ \, \text{by (1) and (2)}$$

$$[T(T^{*2}(T^D)^2)]^{n+1} = [N(T^*(T^D))^2 T]^{n+1}$$
(5)

Hence the proof as required.

References

^[1] Abood and Kadhim, Some properties of D-operator, Iraqi Journal of Science, 61(12)(2020), 3366-3371.

^[2] S. R. Campbell and C. D. Meyer, Generalized inverses of linear transformations, Pitman, New York, (1991).

- [3] M. Dana and R. Yousefi, On the classes of D-normal operators and D-quasi normal operators on Hilbert space, Operators and Matrices, 12(2)(2018), 465-487.
- [4] A. A. S. Jibril, On Operators for which $T^{*2}(T)^2 = (T^*T)^2$, International Mathematical Forum, 5(46)(2010), 2255-2262.
- [5] V. Revathi and P. Maheswari Naik, A study on properties of M quasi-class (Q) operator, International Journal of Advance Research, Ideas and Innovations in Technology, 5(5)(2019), 387-390.