ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Further Generalization of Unitary Quasi-Equivalence of Operators

Wanjala Victor^{1,*} and A. M. Nyongesa¹

1 Department of Mathematics, Kibabii University, Bungoma, Kenya.

Abstract: In this paper, we further generalize the class of n-Unitary Quasi-Equivalence by extending this study to (n,m)-Unitary Quasi-Equivalence. We investigate the properties of this class and also the relation of this equivalence class to other relations.

Keywords: Unitary Quasi-Equivalence , (n,m)-metric equivalence, (n,m)-unitary Quasi-Equivalence, (n,m)-normal operators. \bigcirc JS Publication.

1. Introduction

H is a superable complex Hilbert space and B(H) is the Banach algebra of all bounded linear operators throughout this paper. $T \in B(H)$ is normal if $T^*T = TT^*$, n-normal if $T^*T^n = T^nT^*$, (n,m)-normal if $T^*mT^n = T^nT^{*m}$ projection if $T^2 = T$, Hyponormal if $T^*T \geq TT^*$, quasinormal if $T(T^*T) = T^*T$, n-hyponormal if $T^*T^n \geq T^nT^*$, (n,m)-hyponormal if $T^*mT^n \geq T^nT^{*m}$. $S,T \in B(H)$ are said to be Metrically equivalent if $S^*S = T^*T$ [3], n-metrically equivalent if $S^*S^n = T^*T^n$ [6] and (n,m)-metrically equivalent if $S^*mS^n = T^*mT^n$ for more see [7], Unitarily Quasi-Equivalent if there exists a unitary operator $U \in B(H)$ such that $S^*S = UT^*TU^*$ and $S^*S = UT^*U^*$ [1], n-unitarily quasi-equivalent if $S^*S^n = UT^*T^nU^*$ and $S^nS^* = UT^nT^*U^*$. Two operators $S \in B(H)$ and $T \in B(H)$ are said to be (n,m)-Unitarily Quasi-Equivalent if there is existence of a unitary operator $U \in B(H)$ such that $S^*mS^n = UT^*mT^nU^*$ and $S^nS^*m = UT^nT^*mU^*$ for positive integers n and m. We note that (n,m)-Unitarily Quasi-Equivalent operators are n-Unitarily Quasi-Wquivalent operators when m = 1 and Unitarily quasi equivalent when n = m = 1.

2. Main Results

Theorem 2.1. (n,m)-Unitary Quasi-Equivalence is an equivalence relation.

Proof. Suppose $S, T, P \in B(H)$, then S is (n,m)-Unitarily Quasi-Equivalent to S since $S^{*m}S^n = IS^{*m}S^nI^*$ and $S^nS^{*m} = IS^nS^mI^*$ for I = U. If S is (n,m)-Unitarily Quasi-Equivlent to T, then $S^{*m}S^n = UT^{*m}T^nU^*$ and $S^nS^{*m} = UT^nT^{*m}U^*$. Pre-multiplying and post-multiplying the two equations by U^* and U on both sides we end up with $T^{*m}T^n = US^{*m}S^nU^*$ and $T^nT^* = US^nS^{*m}U^*$. Hence T is n-Unitarily Quasi-Equivalent to S. We now have to show that if S is n-Unitarily Quasi-Equivalent to T and T is n-Unitarily Quasi-Equivalent to P, then S is n-Unitarily Quasi-Equivalent to P. Now

 $^{^*}$ E-mail: wanjalavictor 421@gmail.com

 $S^{*m}S^n = UT^{*m}T^nU^*$ and $S^nS^{*m} = UT^nT^{*m}U^*$ and $T^{*m}T^n = VP^{*m}P^nV^*$ and $T^nT^{*m} = VP^nP^{*m}V^*$ where U and V are unitary operators. Then $S^{*m}S^n = UT^*T^nU^* = UVP^{*m}P^nV^*U^* = QP^{*m}P^nQ^*$, for Q = UV which is unitary. Equally $S^nS^{*m} = UT^nT^{*m}U^* = UVP^nP^{*m}V^*U^* = QP^nP^{*m}Q^*$, for Q = UV which is unitary. This shows that S is n-Unitarily Quasi-Equivalent to P and hence n-Unitary Quasi-Equivalence is an equivalence relation.

Theorem 2.2. Let $S, T \in B(H)$ be (n, m)-unitarily Quasi-equivalent. Then S is (n, m)-normal if and only if T is (n, m)-normal.

Proof. Suppose that S and T are (n,m)-unitarily quasi-equivalent and also suppose that S is (n,m)-normal, then $T^{*m}T^n = US^{*m}S^nU^*$ and $T^nT^{*m} = US^nS^{*m}U^*$. Hence $T^{*m}T^n = US^{*m}S^nU^* = US^nS^{*m}U^* = T^nT^{*m}$. The converse is proved in the similar way.

Lemma 2.3. Two operators $S, T \in B(H)$ are (n,m)-unitarily Quasi-equivalent if and only if $S^{*m}S^n - S^nS^{*m} = U(T^{*m}T^n - T^nT^{*m})U^*$.

Theorem 2.4. Let $S, T \in B(H)$ be (n,m)-unitarily Quasi-equivalent. Then S is (n,m)-hyponormal if and only if T is (n,m)-hyponormal.

Proof. The proof follows from Lemma , $S^{*m}S^n - S^nS^{*m}$ is unitarily equivalent to $T^{*m}T^n - T^nT^{*m}$. If $S^{*m}S^n - S^nS^{*m} \ge 0$ then $T^{*m}T^n - T^nT^{*m} = U(S^{*m}S^n - S^nS^{*m})U^* \ge 0$. This shows that (n,m)-Unitary quasi-equivalence preserves (n,m)-hyponormality.

We note that (n,m)-unitary quasi-equivalence preserves (n,m)-quasinormality and (n,m)-binormality of operators, this follows from Theorem 2.4 and the fact that these classes are contained in the class of (n,m)-hyponormal operators.

Lemma 2.5. $T \in B(H)$ is (n,m)-unitarily equivalent to a unitary operator if and only if it is a unitary operator.

Proof. Suppose that $T^n = PU^nP^*$, where $U, P \in B(H)$ are unitary operators. Then we have;

$$T^{*m}T^n = PU^{*m}P^*PU^nP^* = I$$

and

$$T^n T^{*m} = P U^n P^* P U^{*m} P^* = I$$

Lemma 2.5 can be extended to the class of (n,m)-unitarily Quasi-equivalent of operators.

Theorem 2.6. $T \in B(H)$ is n-unitarily Quasi-equivalent to a unitary operator if and only if it is a unitary operator.

Proof. Let $T \in B(H)$ is (n,m)-unitarily Quasi-equivalent to a unitary operator $P \in B(H)$, then there exists a unitary operator $U \in B(H)$ such that $T^{*m}T^n = U(P^{*m}P^n)U^* = I$ and $T^nT^{*m} = U(P^nP^{*m})U^* = I$. This implies that $T^{*m}T^n = T^nT^{*m}$. The converse follows from Lemma 2.5.

Theorem 2.7. If $S, T \in B(H)$ are both 2-Self adjoint and (2,2)-Unitarily quasi-equivalent, then S^4 and T^4 are unitarily equivalent.

Proof. The proof follows directly from the definitions; $S^{*2}S^2 = UT^{2*}T^2U^*$ and $S^2S^{*2} = UT^2T^{*2}U^*$, then using the self adjoint property of S and T we have; $S^4 = UT^4U^*$. Hence the proof.

Theorem 2.8. Let $S,T \in B(H)$ be (n,m)-unitarily Quasi-equivalent. Then $||S^n|| = ||T^n||$.

Proof. $||S^n||^2 = ||S^{*m}S^n|| = ||UT^{*m}T^nU^*|| = ||T^{*m}T^n|| = ||T^n||^2$. Taking square root on both sides of the equation we get the intended result.

Proposition 2.9. Let $T \in B(H)$, then we have

(1).
$$Ker(T^{*m}T^n) = Ker(T^n)$$
.

(2).
$$\overline{Ran(T^nT^{*m})} = \overline{Ran(T^n)}$$
.

Proof.

(1).
$$Ker(T^{*m}T^n) = \{\xi \in H : T^{*m}T^n\xi = 0\}$$

= $\{\xi \in H : T^n\xi = 0\}$
= $Ker(T^n)$

(2).
$$\overline{Ran(T^nT^{*m})} = \overline{\{\xi \in H : \xi = T^nT^{*m}x, x \in H\}}$$
$$= \overline{\{\xi \in H : \xi = T^n(T^{*m}x)\}}$$
$$= \overline{Ran(T^n)}.$$

Theorem 2.10. If $S,T \in B(H)$ are (n,m)-unitarily Quasi-equivalent, then $Ker(S^n) = Ker(T^n)$ and $\overline{Ran(\|S^n\|)} = \overline{Ran(\|T^n\|)}$.

Proof. The proof follows from Proposition 2 and the definition of n-unitary quasi-equivalence of operators. \Box

Corollary 2.11. If $S, T \in B(H)$ are (n,m)-unitarily Quasi-equivalent and S^n is injective, then T^n is injective.

We note that n-unitarily quasi-equivalence unlike n-metric equivalence preserves injectivity of operators.

References

- [1] Benard Mutuku Nzimbi and Stephen Wanyonyi Luketero, On unitary Quasi-Equivalence of Operators, International Journal of Mathematics And its Applications, 8(1)(2020), 207-215.
- [2] A. A. Jibril, On n-power normal operators, The Arabian Journal for Science and Engineering, 33(2008), 247-251.
- [3] B. M. Nzimbi, G. P. Pokhariyal and S. K. Moindi, A Note on Metric Equivalence of some Operators, Far East J. F Math. Sci., 75(2013), 301-318.
- [4] Mahmoud Kutkut, On quasiequivalent operators, Bull. Cal. Math. Soc., 90(1998), 45-52.
- [5] S. A. Alzuraiqi and A. B. Patel, On n-Normal Operators, General mathematics Notes, 1(2)(2010), 61-73.
- [6] Wanjala Victor, R. K. Obogi and M. O. Okoya, On N-Metric equivalence of Operators, International Journal of Mathematics And its Applications, 8(1)(2020), 107-109.
- [7] Wanjala Victor and A. M. Nyongesa, On (n,m)-metrically equivalent operators, International Journal of Mathematics And its Applications, 9(2)(2021), 101-104.